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Preface

One of the key ideas to emerge in the field of modern control is the use of opti-
mization and optimal control theory to give a systematic procedure for the design
of feedback control systems. For example, in the case of linear systems with full
state measurements, the linear quadratic regulator (LQR) approach provides one
of the most useful techniques for designing state feedback controllers; e.g., see
[3]. Also, in the case of linear systems with partial information, the solution to
the linear quadratic Gaussian (LQG) stochastic optimal control problem provides
a useful technique for the design of multivariable output feedback controllers; see
[3]. However, the above optimal control techniques suffer from a major disadvan-
tage in that they do not provide a systematic means for addressing the issue of
robustness. The robustness of a control system is a fundamental requirement in
designing any feedback control system. This property of the control system re-
flects an ability of the system to maintain adequate performance and in particular,
stability in the face of variations in the plant dynamics and errors in the plant
model which is used for controller design. The enhancement of robustness is one
of the main reasons for using feedback; e.g., see [87].

The lack of robustness which may result when designing a control system via
standard optimal control methods, such as those mentioned above!, has been a
major motivation for research in the area of robust control. Research in this area
has resulted in a large number of approaches being available to deal with the issue
of robustness in control system design; e.g., see [47]. These methods include those

't is known for example, that in the partial information case, an LQG controller may lead to very
poor robustness properties; e.g., see {50].
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based on Kharitonov’s Theorem (see [104, 7]), H® control theory (e.g., see [52,
9]) and the quadratic stabilizability approach (e.g., see [6, 102]). Also, the theory
of absolute stability should be mentioned; e.g., see [120, 2, 137, 162]. For the
purposes of this book, it is worth mentioning two important features of absolute
stability theory. These features lead us to consider absolute stability theory as a
forerunner of contemporary robust control theory. Absolute stability theory was
apparently one of the first areas of control theory that introduced and actively used
the notion of an uncertain system. Also, absolute stability theory introduced and
made use of matrix equations that were termed Lur’e equations in the Russian
literature and are known as Riccati equations in the West; e.g., see [119, 95, 256,
23].

In this book, we present the reader with some of the latest developments in
robust control theory for uncertain systems. In particular, we will consider the
quadratic stabilizability approach to the control of uncertain systems with norm
bounded-uncertainty and a more general absolute stabilizability approach to the
control of uncertain systems described by integral quadratic constraints (IQCs).
The reader will see that the integral quadratic constraint concept and its general-
izations leads to an uncertain system framework in which the standard LQR and
LQG optimal controller design methodologies can be extended into minimax opti-
mal control and guaranteed cost control methodologies. Such an uncertain system
framework allows the designer to retain existing methods of LQR/L.QG design
while the issue of robustness can be addressed by an appropriate choice of the
uncertainty structure in the uncertain system model. In the book, this approach is
illustrated by the two practical problems, a missile autopilot design problem and
an active noise control problem.?

Note that for the most part, the robust control problems considered in this book
are closely related to corresponding H°® control problems. Furthermore, through-
out the book, the solutions to these robust control problems will be formulated in
terms of Riccati equations of the form arising in H°® control theory. These facts
motivate the title of this book.

The book focuses only on robust control system design problems. Other related
topics such as robust filtering and robust model validation are outside the scope
of the book. However, the methods presented here have been applied successfully
to these and other related problems; e.g., see [196, 186, 192, 130, 199, 201, 203,
132]. In particular, robust filtering problems were carefully studied in the research
monograph [159].

Another area in which the methods and ideas developed in this book have been
successfully applied is in the analysis and synthesis of hybrid control systems; see
[204, 175, 205, 214]. A survey of results on hybrid control systems together with
a bibliography relating to this area can be found in the book [122].

2The reader who is interested in the practical aspects of these examples can find some additional
details on the book website http:/routh.ee.adfa.edu.aw/~irp/RCD/index.html.
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It is worth noting that in this book, we deal only with continuous-time systems.
This is in no way due to limitations in the theory. The reader who is interested in
robust control of discrete-time uncertain systems can use this book as a conceptual
guideline to the analogous discrete-time theory. Moreover, discrete-time counter-
parts to the majority of the results in this book have already been published. We
will point out the relevant references in the text.

In the production of this book, the authors wish to acknowledge the support
they have received from the Australian Research Council. Also the authors wish
to acknowledge the major contributions made by their colleagues Duncan Mc-
Farlane, Matthew James, Paul Dupuis, Uffe Thygesen and Hemanshu Pota in the
research that underlies much of the material presented in this book. Furthermore,
the first author is grateful for the enormous support he has received from his wife
Lynn and children Charlotte and Edward. Also, the second author is truly thankful
to Grisha, Anna and Elena for their love, encouragement and emotional support.
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Frequently used notation

R" is the n-dimensional Euclidean space of real vectors.

Rff_ is the positive orthant of R™. That is, Ri consists of all vectors in R™ such
that each component is positive.

cl M denotes the closure of a set M C R™.

|| - || is the standard Euclidean norm.

||A]] where A is a matrix, is the induced operator norm of A.

A’ denotes the transpose of the matrix A.

p(A) denotes the spectral radius of a matrix A.

Amaz(N) denotes the maximum eigenvalue of a symmetric matrix N.
tr N denotes the trace of a matrix N.

M > N (M > N) where M and N are square matrices, denotes the fact that
the matrix M — N is non-negative (positive) definite.

C(J, X) is the set of continuous functions f: J — X.
Cy(R™) denotes the set of bounded continuous functions from R™ to R.

L2[T,T2) is the Lebesgue space of square integrable functions, defined on
T1,T2), Ty < T < 0.



xvi Frequently used notation

ll2()113 is the norm in L[Ty, T), thats le()|[§ = 7 lle@)|Pdt, Ty < T, <
0.

(z,y) is the inner product in a Hilbert space.
G* denotes the adjoint of an operator G.

H® is the Hardy space of complex functions f(s) analytic and bounded in the
open right half of the complex plane.

117 (8)]|oo is the norm in the Hardy space H®, || £(8)||oo := Rsup 1£(9)].
e s>0

P is a set of uncertainty inputs
= is a set of admissible uncertainty inputs.

d | 0 denotes the fact that § approaches zero monotonically from above. Simi-
larly, T' 4 cc means that T' approaches co monotonically.

(9, F) is a measurable space.
W (t) is a Wiener process.

EQ is the expectation operator with respect to a probability measure Q. Also, E
is the expectation with respect to a reference probability measure.

a.s. is an acronym for almost surely. In probability theory, this refers to a property
which is true for almost all w € §, i.e,, the set {w : the property is false}
has probability zero.

Q@ < P denotes the fact that the measure @ is absolutely continuous with respect
to the measure P where @ and P are Lebesgue measures defined on a
measurable space.

L, (2, F, Q) is the Lebesgue space of F-measurable functions f: @ — X such
that E9|| f||% < oo; here X is a Banach space.

L2(s,T;R™) is the Hilbert space generated by the (¢,w)-measurable non-
anticipating random processes z(t,w) : [s,T} x @ — R™.

Il - Il is the norm on the space Lqo(s,T;R™) defined by ||| - ||] =
T 1/2
(ST Bl |2at)
a A b denotes the minimum of the two real numbers a and b.

M (R™) denotes the set of probability measures on the set R™,



1.

Introduction

1.1 The concept of an uncertain system

In designing a robust control system, one must specify the class of uncertainties
the control system is to be robust against. Within the modern control framework,
one approach to designing robust control systems is to begin with a plant model
which not only models the nominal plant behavior but also models the type of
uncertainties which are expected. Such a plant model is referred to as an uncertain
system.

There are many different types of uncertain system model and the form of
model to be used depends on type of uncertainty expected and the tractability
of robust control problem corresponding to this uncertain system model. In many
cases, it is useful to enlarge the class of uncertainties in the uncertain system
model in order to obtain a tractable control system design problem. This process
may however lead to a conservative control system design. Thus, much of robust
control theory can be related to a trade off between the conservatism of the un-
certain system model used and the tractability of the corresponding robustness
analysis and robust controller synthesis problems.

Some commonly occurring uncertainty descriptions are as follows:

(i) A constant or time varying real parameter representing uncertainty in the
value of a parameter in the system model; e.g., uncertainty in a resistance
value in an electrical circuit.

(ii) A transfer function representing the uncertainty which might arise from ne-
glecting some of the system dynamics; e.g., the effect of neglecting parasitic
capacitances in an electrical circuit.
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£(t) z(t)
Uncertainty A

Nominal system

B ——— ’——-—b

u(t) y(t)

Figure 1.1.1. Uncertain system model block diagram

(iii) A nonlinear mapping which represents the uncertainty due to neglected non-
linearities.

An important class of uncertain system models involves separating the nominal
system model from the uncertainty in the system in a feedback interconnection;
see Figure 1.1.1. Such a feedback interconnection between the nominal model
and the uncertainty is sometimes referred to as an linear fractional transformation
(LFT); e.g., see [48].

‘Whatever the form of the uncertainty A in an uncertain system, it is typically
a quantity which is unknown but bounded in magnitude in some way. That is, we
do not know the value of the uncertainty but we know how big it can be. Some
typical uncertainty bounds are as follows:

(i) A real time-varying uncertain parameter A(t), can be bounded in absolute
value:

A < p forallt> 0. (1.1.1)

This includes time-varying norm-bounded uncertainty blocks; e.g., see
[102].

(i) If A(s) is an uncertain transfer function, we could bound its magnitude at
all frequencies:

|A(jw)| < p forallw. (1.1.2)

This amounts to a bound on the H* norm of the transfer function A(s);
e.g., see [S1].

Also, note that each of the above uncertainty bounds can be extended in a straight-
forward way to a matrix of uncertainties.
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Uncertain systems of the types described above have been widely studied. Fur-
thermore, useful solutions have been obtained to various robust control problems
for these classes of uncertain systems; e.g., see [150, 142, 102, 156, 157, 146, 51,
58]. However, these classes of uncertain systems do have some deficiencies.

Consider the class of systems with norm bounded uncertainties of the form
(1.1.1). Although this class of uncertain systems allows for time-varying uncer-
tain parameters and also for cone-bounded memoryless nonlinearities, it does not
allow for dynamic uncertainties such as might arise from unmodeled dynamics.
Another problem concerns the results which can be obtained for this class of
uncertainties. Necessary and sufficient conditions for quadratic stabilizability of
such systems can be obtained. However, the notion of quadratic stabilizability
does not directly relate to the behavior of the system. Also, although tight state-
feedback guaranteed cost results can be obtained (see [156, 157] and Section 5.2
of this book), the generalization to the output-feedback case is less satisfactory
and only leads to upper bounds. All of these facts motivate the integral quadratic
constraint (IQC) uncertainty description which will be described in the sequel.

H® type uncertainty constraints of the form (1.1.2) provide further motivation
for an uncertainty description in terms of integral quadratic constraints. First con-
sider the transfer function uncertainty block in Figure 1.1.1. From the definition
of the norm on the Hardy space H®°, it follows that the frequency domain bound
(1.1.2) is equivalent to the frequency domain integral quadratic constraint

/jo € (jw)|Pdw < /_oo |2(Gw)|2dw (1.1.3)

which must be satisfied for all signals z(t) provided these integrals exist. Here,
é(s) is the Laplace transforms of the uncertainty input £(t). Also, £(s) is the
Laplace transform of the uncertainty output z(¢). Furthermore, () is the input to
the uncertainty block A and £(2) is the output of this uncertainty block.

It is well known (e.g., see [124]) that integral quadratic constraints of the form
of (1.1.3) may be applied in the analysis of nonlinear systems. In particular, a
number of the system properties such as passivity, structural information about
perturbations, energy constraints on exogenous perturbations, saturations, uncer-
tain delays etc., allow for a description in terms of suitable constraints of the form
(1.1.3). For further details, we refer the reader to the frequency domain integral
quadratic constraints given in [124]. However as mentioned in [124], there is an
evident problem in using this form of uncertainty description. This is because the
condition (1.1.3) makes sense only if the signals £(¢) and 2(t) are square inte-
grable. Reference [124] points out how this problem can be resolved in certain
situations. For example, in the case where the nominal system is stable, this prob-
lem can be easily overcome. However in stabilization problems, it is possible that
the uncontrolled system is unstable and then its inputs and outputs will not be
square summable unless the system is controlled using a stabilizing controller. In
this book, we show that the problems arising from uncertain systems with an un-
stable nominal can be overcome to a large extent by using time domain versions
of the integral quadratic constraint uncertainty description.
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An uncertain system model must be chosen so that it captures the essential fea-
tures of the real system and the uncertainty in that system. Also, the uncertainty
class must be chosen so that it leads to a tractable solution to the control prob-
lem under consideration. These facts have led us to use the time domain integral
quadratic constraint uncertainty descriptions presented in Section 2. Since this
form of uncertainty description prevails throughout the book, from now on we
will usually drop the words “time domain”. That is, we will use the expression
Integral Quadratic Constraint (IQC) to denote time domain integral quadratic
constraints.

There are a number of advantages in dealing with uncertain systems defined by
IQCs. The class of uncertainties satisfying an IQC is richer than the class of uncer-
tainties satisfying the corresponding norm bound condition. Also, a time domain
IQC can be applied to model uncertainty in finite-horizon problems. Among other
advantages of the time domain IQC uncertainty description, we note that this un-
certainty description allows us to model structured uncertain dynamics in systems
subject to stochastic noise processes. Our motivation for considering uncertain
systems which are subject to stochastic noise process disturbances is twofold. In
the first instance, many engineering control problems involve dealing with sys-
tems which are subject to disturbances and measurement noise which can be well
modeled by stochastic processes. A second motivation is that in going from the
state-feedback linear quadratic regular (LQR) optimal control problem to the mea-
surement feedback linear quadratic Gaussian (LQG) optimal control problem, a
critical change in the model is the introduction of noise disturbances. Hence, it
would be expected that in order to obtain a reasonable generalization of LQG
control for uncertain systems, it would be necessary to consider uncertain sys-
tems which are subject to disturbances in the form of stochastic noise processes.

Note that stochastic extensions to the integral quadratic constraint uncertainty
description provide a possible approach to the problem of non-worst case robust
controller design. Although the worst case design methodology has proved its ef-
ficacy in various engineering problems, it suffers from the disadvantage that the
designer lacks the opportunity to discriminate between “expected” uncertainties
and those uncertainties which seldom occur. Indeed, the standard deterministic
worst case approach to robust controller design presumes that all uncertainties
are equally likely. That is, one can think of the uncertainty as arising from a uni-
formly distributed random variable taking its values in the space of uncertainties.
However, this may not accurately represent the uncertainty in the system under
consideration. For example, it may have been determined that the uncertainties
have a probability distribution other than uniform and the designer may wish to
make use of this & priori information about the distribution of the uncertainties.
In this case, it is useful to consider a stochastic uncertain system in which the
uncertainty has a stochastic nature. Hence, a suitable description of stochastic
uncertainty is required. To this end, in this book we consider stochastic integral
quadratic constraints or more generally, stochastic relative entropy constraints.



