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Preface

One of the most beautiful results in classical complex analysis that has a great appeal
to geometry is the solution by F. Klein and H. Poincaré of the uniformization problem
for multivalent analytic functions and (consequently) Riemann surfaces. It states that
each conformal structure on a Riemann surface is induced by one of the three classical
geometries: Euclidean, spherical or hyperbolic (Lobachevskian), that is this structure
is represented by a Riemannian metric on the surface which has a constant (zero,
positive or negative) curvature.

According to Felix Klein’s Erlangen program of 1872, geometry is the study of
the properties of a space which are invariant under a group of transformations. A
geometry in Klein’s sense is thus a pair (X, G) where X is a manifold and G is a Lie
group transitively acting on X. Due to the Klein—Poincaré geometrization theorem,
the Euclidean, spherical and hyperbolic geometries are the most important ones in
dimension two. Howeyver, they are all particular cases of the more general conformal
geometry, that s the (S2, Mib(2))-geometry, where Mob(r) is the group of conformal
(Mobius) transformations of the n-dimensional sphere S”. This is not a Riemannian
geometry. A conformal structure on a manifold M is the same as a conformal class of
Riemannian metrics, each locally conformally equivalent to a flat metric. In dimension
three, due to Thurston’s geometrization, many 3-manifolds admit conformal structures,
although relatively simple ones might not (among the eight possible 3-geometries,
nontrivial closed solvable and nilpotent manifolds are examples of this). Generally,
conformal geometries naturally appear at infinity for negatively curved Riemannian
geometries. Moreover, due to M. Gromov’s [5, 6] geometric approach to infinite
groups, conformal geometry invents new fruitful methods in combinatorial group
theory.

The main goal of our book is to present the first systematic study of conformal
geometry of n-manifolds, as well as its Riemannian counterparts (in particular, hy-
perbolic geometry). A unifying theme is the discrete holonomy groups of the corre-
sponding geometric structures, which also involves algebra and dynamics. However,
we do not pay much attention to 2-dimensional geometries covered by many classical
and recent books (see, for example, Casson—Bleiler [1], Beardon [4], Ford [1], Kra
[3], Maskit [12]). Also, this book does not cover conformal geometries that appear at
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infinity for noncompact symmetric spaces with variable sectional curvature. Never-
theless we indicate some relationship to those geometries and provide the necessary
references.

Regarding hyperbolic geometry, some recent books may be useful for the reader
as a source of alternative approaches and references: Benedetti—Petronio [1], Rat-
cliffe [1] (with rich historical notes) and Apanasov [36]. We have minimized the
unavoidable overlap in the covered results on hyperbolic manifolds by using those
books, especially the last one (which is an English edition of the 1983 Russian book
Apanasov [15]), as a source for preliminary results and constructions. Additionally,
the enormous expansion in journal literature on conformal geometry of manifolds and
the new important results obtained in the last decades years have allowed us to point
out new connections and perspectives in this field and to illustrate various aspects of
the theory. In addition to formal proofs we also indicate some intuitive approaches,
which emphasize the ideas behind the constructions. This is complemented by a large
number of concrete examples (continuing the book by S. Krushkal’, B. Apanasov
and N. Gusevskii [3]) and figures which both use and support the reader’s geometric
imagination and make the matter more transparent. We have tried to make the book
as complete as possible, although the choice of topics obviously reflects our personal
preferences.

Our interest in this area started in the “golden years” of mathematics in Novosi-
birsk Akademgorodok in the seventies and eighties, when the author worked in a
remarkable geometry/topology group that included A. D. Aleksandrov, P. P. Belin-
skii, V. Goldstein, N. Gusevskii, S. Krushkal’, V. Marenich, A. Mednykh, I. Niko-
laev, Yu. G. Reshetnyak, V. Toponogov and several doctoral students: D. Derevnin,
V. Chueshev, M. Kapovich, E. Klimenko, G. Lyan, L. Potyagailo, A. Tetenov, A. Ves-
nin, S. Vodopyanov, I. Zhuravlev and others. This provided a perfect environment for
our research and for advanced graduate courses we taught at the Novosibirsk State
University and at the Sobolev Institute of Mathematics in the Academy of Sciences.
These courses were continued in graduate courses we taught at the Universitat Au-
tonoma de Barcelona (Spain) and at the University of Oklahoma in Norman, USA.
This book is based on those courses, and it should be accessible to advanced graduate
students in either mathematics or theoretical physics. In particular, the first three chap-
ters (which make the book self-contained) are addressed to those graduate students
who are approaching the subject for the first time. These chapters may be used as a
text for a graduate class. The book quickly introduces these students to up-to-date
problems. To the second type of readers, mature mathematicians working in other
fields and theoretical physicists, this book gives new knowledge and understanding of
conformal geometry on manifolds and the conformal action of fundamental groups.
To the experts, the book presents some new material published for the first time.

It is our deep pleasure to thank our colleagues and friends with whom we discussed
the subject for a long time. In addition to those mentioned above, a debt of grati-
tude for a series of valuable remarks is owed to Francis Bonahon, Dubravko Ivan§ié,
Anatoly Fomenko, Michael Gromov, Yoshinobu Kamishima, Ann Chi Kim, Ravi
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Kulkarni, Kyung Bai Lee, Gregory Margulis, Sergei Matveev, Alexander Mednykh,
Darryl McCullough, Jose-Maria Montesinos Amilibia, Walter Neumann, Vladislav
Nikulin, Ken’ichi Ohshika, Masahico Saito, Larry Siebenmann, Alexander Starkov,
Bill Thurston, Andrei Vesnin, Emest B. Vinberg, Oleg Viro and Chengbo Yue.

Our special thanks are due to Nikolai Saveliev for discussions and help during the
writing this book. Finally, we are deeply indebted to the Walter de Gruyter Publishing
Company, especially to Dr. Manfred Karbe, for encouraging us to write this book.

Norman, Spring 2000 Boris Apanasov
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Chapter 1

Geometric Structures

In addition to purely topological methods in the study of manifolds, last two decades
results and especially Thurston’s work [1-8] have shown that geometry also plays
an important role in low-dimensional topology. The basic aim of this chapter is to
introduce (following Thurston [1]) the important concept of geometric (Riemannian
and sub-Riemannian) structures on manifolds and its generalization for manifolds
with singularities (so-called orbifolds). We will also discuss various ‘nice’ geometries
which arise in dimensions three and four, as well as the relationship between geometric
and topological properties of manifolds carrying those geometries. This discussion
will be continued in Chapter VI.

§1. (X, G)-structures on manifolds

Let M be a topological Hausdorff space with a countable basis. One calls M a topo-
logical n-manifold (n-dimensional manifold) if each point x € M has a neighborhood
U homeomorphic to the Euclidean space R* = ¢(U). If in this condition, the home-
omorphic image ¢(U) may be either the Euclidean space R” or its closed half-space
{x € R" : x, > 0}, we arrive at the definition of a manifold with boundary. Here
the set of points x € M not having neighborhoods homeomorphic to the Euclidean
space forms the boundary d M, which is a manifold of dimension (n — 1). A compact
manifold without boundary is called closed. In such a way, a topological n-manifold
is specified by its atlas {(U;, ¢;)};cz consisting of local charts ¢;: U; — R" where, for
Ui NU; # @, changes of charts ¢; goj"l are homeomorphisms defined on subdomains
inR". M is called a smooth manifold if, for any charts (U1, ¢1) and (U3, ¢2) on M in
the chosen atlas with U; N U, # @, the changes of charts ¢1 o ¢ I are smooth.

Now let M be a smooth manifold. For each x € M, we denote by Ty (M) the
tangent space of the manifold M at x (an n-dimensional topological vector space).
Consider the set T(M) = L_JXE »m Tx (M) and the natural projection p: T(M) — M
such that p~1(x) = T, (M). The triple {T(M), M, p} is called a tangent fiber bundle
of the manifold M, while the set p~!(x) is called a fiber in the fiber bundle over x € M.
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A Riemannian manifold is said to be a pair (M, g) consisting of a smooth manifold
M and a smooth mapping g: T (M) — R, which is a positive-definite quadratic form
in each fiber T, (M). The Riemannian manifold (M, g) is a metric space whose metric
is generated by those quadratic forms. That is, for points yo, y1 € M,

1
p(yo, y1) = ir;f length(y) = il;,f /0 V &y (Y (D)t (LD

where the lower bound is taken over all continuously differentiable curves y in M
joining points yp and yy, i.e., ¥ (0) = yo and y (1) = yi. The function p: M x M — R
has all the properties of a metric.

Acurve y C M is described as being the shortest if its length is the least among
all curves with the same ends. It is clear from (1.1) that the curve y with ends yg and
y1 will be the shortest if and only if its length is o (yo, y1). A curve y C M is called
a geodesic if each of its points has a neighborhood such that each arc of the curve y
in this neighborhood is the shortest one.

Considering three kinds of curvatures for Riemannian manifolds (sectional cur-
vature, Ricci curvature and scalar curvature), we will be mainly concerned with the
sectional curvature which has a geometric description making it easier to handle. One
may define the sectional curvature in a point p of a Riemannian manifold M with
respect to a 2-subspace V C T, M as the curvature at p of the oriented Riemann sur-
face obtained as the image of a small neighborhood U(0) C V under the exponential
mapping.

There is another way to add more structure to a manifold. Namely, instead of
considering an atlas on M, one can think about M as if it were composed of pieces
of R", glued together by the homeomorphisms g;; = ¢; <pj_1. Denoting this set of
homeomorphisms by 4, we see that it should satisfy the following obvious conditions
which transform § to a pseudo-group of local homeomorphisms between open sets
in R™:

1) arestriction gp of any element g € § to an open set in its domain is an element
of ;

2) acomposition g o h of any two elements g, h € § (if defined) is an element of
$:

3) the inverse element for g € § is an element of §; and

4) if D =|J;Di C R* and g: D — D' is a local homeomorphism such that
8i = g|p; € § foralli, then g € §.

Manifolds M, obtained by gluing together pieces of R” by means of local home-
omorphisms from a pseudo-group §, are called §-manifolds.

Specifying a pseudo-group 4 in this definition, one can add more structure on a
g-manifold M. For example, we arrive at the notion of a PL-manifold if § is the
pseudo-group of local piecewise-linear homeomorphisms in R", and at the notion of
a C"-manifold (a C"-smooth manifold, for » > 1) if § is the pseudo-group of local
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C’-diffeomorphisms in R". Furthermore, a very important class of §-manifolds can
be obtained by using the following pseudo-groups §.

Let us fix a manifold X and a group G of self-homeomorphisms of X and consider
a pseudo-group § consisting of all restrictions of elements of G to open subsets in X.
A manifold M with such §-structure is represented as composed of pieces of X by
means of elements of the pseudo-group § associated with the group G. We call such
g-manifolds (X, G)-manifolds or manifolds modeled on (X, G)-geometry.

Here, we use the term “geometry” in the sense of F. Klein, meaning by geometry
of the pair (X, G) those properties of X that are left invariant under the group G
action. Sometimes, this “invariant” approach to studying geometry is equivalent to the
classical approach which can be used to study Euclidean and non-Euclidean geometries
as well as to the Riemannian geometry approach (see Theorem 1.14).

Example 1.1 (Affine torus). Let X = R" and G = Aff(R") be the group of affine
transformations in R”. Then a (R”, Aff (R"))-manifold is an affine n-manifold. In
particular, an affine structure may be defined on two-dimensional torus 72 = §! x !
by gluing the opposite sides of a quadrilateral which needs not to be a parallelogram.
This gluing is performed by means of two affine transformations in the plane (see
Figure 1), i.e., by elements of the affine pseudo-group, which are restrictions of these
affine transformations on corresponding open subsets in R? containing sides of the
quadrilateral. However, we shall see in what follows that, for a non-parallelogram
case, a torus with such structure is not a complete affine manifold.

Example 1.2 (Euclidean torus). One can introduce a Euclidean structure on n-dimen-
sional torus T" = S! x --. x S! whose fundamental group is a free Abelian group
of rank n. In fact, this torus 7" may be obtained by gluing the opposite sides of an
n-dimensional parallelepiped, (Figure 2). The gluing mappings may be chosen to be
Euclidean translations, and thus a complete Euclidean structure is introduced on the
torus 7™,
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