
By Yuri Tschinkel
ISBN-10: 3930457709
ISBN-13: 9783930457700
Read or Download Mathematisches Institut. Georg-August- Universitat Gottingen. Seminars Summer Term 2004 PDF
Similar mathematics books
New PDF release: The Everything Guide to Calculus I: A step by step guide to
Calculus is the foundation of all complex technology and math. however it might be very intimidating, in particular if you're studying it for the 1st time! If discovering derivatives or realizing integrals has you stumped, this publication can consultant you thru it. This critical source bargains 1000's of perform workouts and covers the entire key techniques of calculus, together with: Limits of a functionality Derivatives of a functionality Monomials and polynomials Calculating maxima and minima Logarithmic differentials Integrals discovering the amount of irregularly formed gadgets by way of breaking down tough techniques and proposing transparent reasons, you'll solidify your wisdom base--and face calculus with out worry!
Sobolev Spaces in Mathematics II: Applications in Analysis - download pdf or read online
Sobolev areas turn into the demonstrated and common language of partial differential equations and mathematical research. between an incredible number of difficulties the place Sobolev areas are used, the subsequent vital issues are within the concentration of this quantity: boundary worth difficulties in domain names with singularities, larger order partial differential equations, neighborhood polynomial approximations, inequalities in Sobolev-Lorentz areas, functionality areas in mobile domain names, the spectrum of a Schrodinger operator with unfavourable strength and different spectral difficulties, standards for the full integrability of platforms of differential equations with functions to differential geometry, a few features of differential varieties on Riemannian manifolds regarding Sobolev inequalities, Brownian movement on a Cartan-Hadamard manifold, and so forth.
- Mathematical Go: Chilling gets the last point (1994)
- Using Matlab for Solving Differential Equations [jnl article]
- G. Lejeune Dirichlet's Werke
- Semilinear elliptic equations with dependence on the gradient via mountain pass techniques, accettato per la pubblicazione su differential and integral equations
- Introduction to Matrices and Linear Transformations. Drawings by Evan Gillespie.
- Proceedings of the international conference, difference equations, special functions and orthogonal polynomials :, Munich, Germany, 25-30 July 2005
Extra resources for Mathematisches Institut. Georg-August- Universitat Gottingen. Seminars Summer Term 2004
Sample text
L (X, s) = P (p ) × ( ⑩❨❶❃×✝✉❢❺✏✇②⑤⑦⑧❯❷❈Ñ⑦✉❢❺⑨❸❊⑤ Ò i = d = ✇②①❈③ù❮❊⑤ ④✡③▲❶✝⑥✏⑤ ❒❙❶ï❒❢Ò X ❸ ✕ ③➮⑥✏⑤ ④✡×❈Ñ Ó ✕ ❺②⑤ ✇②③ L(X, s) ⑤ ❶❃×❈Ñ⑦✉❙⑧❯③ ❒❢Ò L (X, s) ✉❢❶✝❮➘⑤ ✇◆⑥✧Ñ ❒❊⑧▲✉❢Ñ❞Ò➠✉❙⑧●✇②❒❙❺♥Û☞Ó P (T ) ⑤ ❶✝⑥r✇②③⑨✉❙❮➸❒❢Ò P (T ) ❻ i et i X, i p −s −1 p= i p i −s −1 p= d p d p ❶ ♥➊➉ ➽❧➔➲→➈➛➅➜➞➝ ❺ ➔❊➓❭➟➹➒✒➓➈➛❜➒▼➔ ❺❃❺ ➟✲➼➞➒⑨➟➠→➸→❙➝✕➓ ➑ ➔☞➑➐➛ ➑ ➔❛➓ Q ☎❒ ③✍✉❙❮❈❮❊❺②③⑨⑥②⑥❫✇②①❈③✍④✡❒❊❮❊❷❈Ñ⑦✉❢❺②⑤ ✇rÓ✟❒❢Ò✕❮❊⑤ ④✡③▲❶✝⑥✏⑤ ❒❙❶ Ð✯✉❢Ñ⑦✉❢Û❈⑤ ê❛ë✬✉❢❷❬➤❭✉❢❺②⑤ ③❯✇②⑤ ③⑨⑥✓❮❊③❑✔✝❶❈③⑨❮ ❒❭➤❙③▲❺ Q✕ ❻✜✕ ❥➅③❯✇ E Û➭③✟✉❢❶✈③▲Ñ Ñ ⑤ ×❊✇②⑤⑦⑧ù⑧❯❷❈❺②➤❙③➮❒❭➤❙③▲❺ Q ❸❞✉❢❶✝❮❃1Ñ ③❯✇ ∆ ❮❊③▲❶❈❒❢✇②③ù⑤ ✇◆⑥➃❮❊⑤⑦⑥②⑧❯❺②⑤ ④✡⑤ ❶✝✉❢❶❛✇⑨❻ è♥①❈③▲❶❬⑤ ✇◆⑥ ❽❨⑥✏③▲❺②⑤ ③⑨⑥✴⑧▲✉❢❶❬Û➭③✍Û❈❷❈⑤ Ñ ✇✯❷❈×❬Û☞Ó✡⑧❯❒❙❷❈❶❛✇②⑤ ❶❈➄➪✇②①❈③☎❶☞❷❈④ùÛ➭③▲❺✬❒❢Ò F ê☞❺◆✉❭✇②⑤ ❒❙❶✝✉❢Ñ❈×➭❒❙⑤ ❶❛✇◆⑥ ❒❙❶ E ❻ L ❸ p ∞ L(E, s) = ①❈③▲❺②③ p ❺②❷❈❶✝⑥☎✉❢Ñ Ñ❏×❈❺②⑤ ④✡③⑨⑥▲❸❈✉❢❶✝❮ p ✕ 1 a(n) = −s 1−2s 1 − a(p)p + ε(p)p ns n=1 ⑤Ò p ∆ a(p) = ⑤Ò p|∆ ➁➃⑤ ➤❙③▲❶✮✉ ×❈❺②⑤ ④✡③ ❸♥③⑨✉❙⑧◆①✷Ñ ❒❊⑧▲✉❢Ñ❆❀✓❷❈Ñ ③▲❺ ❽➽Ò➠✉❙⑧●✇②❒❙❺✡❒❢Ò ⑧▲✉❢❶✮Û➭③❄❮❊③❯✇②③▲❺②④✡⑤ ❶❈③⑨❮ ③❯↔❊×❈Ñ ⑤⑦⑧❯⑤ ✇②Ñ Ó➮❷✝⑥✏⑤ ❶❈➄✍✇②①❈③✧p✉❢Û➭❒❭➤❙③✯❮❊③⑨⑥②⑧❯❺②⑤ ×❊✇②⑤ ❒❙❶➅❻❡➆☎p❒ ✕ ③▲➤❙③▲❺⑨❸⑨✇②①❈③▲L(E, ❺②③♥✉❢❺②③✯s)⑤ ❶✑✔✝❶❈⑤ ✇②③▲Ñ Ó➮④❬✉❢❶☞Ó✿❀✓❷❈Ñ ③▲❺ Ò➠✉❙⑧●✇②❒❙❺◆⑥▲❻✴Ù ❶✝✉❭✇②❷❈❺◆✉❢Ñ✌❫❛❷❈③⑨⑥r✇②⑤ ❒❙❶ï⑤⑦✱⑥ ❋ ➎◆■Ú➼➹▼❈❘❯❉②❘✟❩❭❖☛✂ù➴❢❚ ➻❙ã◆❩❭❚❛➾◆❇❊❖❞❑❯➼➽❋➠➻❭❖❄➼➹▼❈❩❭➼✧➱❙❘❯➼❨❘❯❉●❳✟❋❖❞❘●■➪➼➹▼❈❘ ❲î■▲❘❯❉●❋➠❘●■ L L(E, s) ➏ p + 1 − #E(Fp ), ε(p) = 1 0, ±1, ε(p) = 0 ❜✇ ❿➁ q ✏✑✍❿✇✮✠✽✡✷➇❼✠✳②✹①✟②✎③✈✇ ➈ ❽ ❿② ➂❯➀➺②✎④❜✇❤✏✑✍❿✇❤✏✳✒ ❻ ②✎④ ❤✍ ➃ ♥è ①❈③✟✉❢❶✝⑥ ✕ ③▲❺✧✇②❒➐✇②①❈⑤⑦⑥✥❫❛❷❈③⑨⑥r✇②⑤ ❒❙❶✈⑧❯❒❙④✡③⑨⑥✧Ò➹❺②❒❙④ ✉❍❫❛❷❈⑤ ✇②③✟❮❊⑤ ❁❞③▲❺②③▲❶❛✇Ú⑥✏❒❙❷❈❺◆⑧❯③❙❻☎⑩❨❶✝❮❊③▲③⑨❮❏❸✝✇②①❈⑤⑦⑥ ⑤ Ñ Ñ➞✇◆✉✟❂❙③ù❷✝⑥✍✇②❒➘④✡❒❙❺②③✟✉❢❶✝✉❢Ñ Ó❛✇②⑤⑦⑧➮❒❙Û✑✘r③⑨⑧●✇◆⑥▲❻❏❳☞❒ ③ ⑤ Ñ Ñ✴❶❈❒ ❮❊③❑✔✝❶❈③✟④✡❒❊❮❊❷❈Ñ⑦✉❢❺➃➄❙❺②❒❙❷❈×✝⑥▲❸ ✕ ④✡❒❊❮❊❷❈Ñ⑦✉❢❺➮Ò➹❒❙❺②④❬⑥✟✉❢❶✝❮➈⑧❯❷✝⑥✏×➍Ò➹❒❙❺②④❬⑥▲❻✽❥➅③❯✇ H ❮❊③▲✕ ❶❈❒❢✇②✕ ③➐✇②①❈③➘❷❈✕ ×❈×➭③▲❺✏❽î①✝✉❢Ñ Ò☎⑧❯❒❙④✡×❈Ñ ③❯↔➍×❈Ñ⑦✉❢❶❈③ ✉❢❶✝❮❬Ñ ③❯✇ Û➭③✍✇②①❈③✍➄❙❺②❒❙❷❈×➐❒❢Ò ⑤ ❶❛✇②③▲➄❙❺◆✉❢Ñ✝④❬✉❭✇②❺②⑤⑦⑧❯③⑨⑥ ⑤ ✇②①➘❮❊③❯✇②③▲❺②④✡⑤ ❶✝✉❢❶❛✇ ✉❢❶✝❮ ×❈❷❊✇ P SLSL(Z)(Z)= SL (Z)/ ± I ✕ 2①❈×③▲❺②2③ I ❮❊③▲❶❈❒❢✇②③⑨⑥✯✇②①❈③➪⑤⑦❮❊③▲✕ ❶❛✇②⑤ ✇rÓ➸④❬✉❭✇②❺②⑤ ↔➸❒❢Ò❫❺◆✉❢1✳❶ ❂ 2 ❻ ↔ ➆✒↕❦➙✰➛✡➜✡➛✍➇❿➙➩➨✹➌✡➊ ♥ ❥➅③❯✇ N 1 Û➭③➮✉❢❶ï⑤ ❶❛✇②③▲➄❙③▲❺⑨❸❊✉❢❶✝❮➘Ñ ③❯✇ 2 2 Γ0 (N ) = { 2 a c 2 b d 2 ∈ P SL2 (Z) | c ≡ 0 (mod N ) } ⊂ P SL2 (Z) Û➭③➮✉✡⑧❯❒❙❶❈➄❙❺②❷❈③▲❶✝⑧❯③Ú⑥✏❷❈Û❈➄❙❺②❒❙❷❈×➘❒❢Ò P SL (Z) ❻ ❥➅③❯✇ Û➭③✈✉✂❶❈❒❙❶❊❽î❶❈③▲➄❛✉❭✇②⑤ ➤❙③➸⑤ ❶❛✇②③▲➄❙③▲❺⑨❻✮Ù ❳❬➻⑨➱❭❇❊❚ ❩❭❉➪➾❯➻❭❉●❳ f ➻r➾➘➶✬❘❯❋ ➴➢▼☞➼ k 1 ➻❭❖ k ⑦ ⑤ ☎ ⑥ ✉✡⑧❯❒❙④✡×❈Ñ ③❯↔☞❽î➤❭✉❢Ñ ❷❈③⑨❮➸①❈❒❙Ñ ❒❙④✡❒❙❺②×❈①❈⑤⑦⑧☎Ò➹❷❈❶✝⑧●✇②⑤ ❒❙❶ï❒❙❶ H ⑥②✉❭✇②⑤⑦⑥rÒ➹Ó☞⑤ ❶❈➄✟✇②①❈③ÚÒ➹❒❙Ñ Ñ ❒ ✕ ⑤ ❶❈➄ Γ (N ) ✇②❺◆✉❢❶✝⑥rÒ➹❒❙❺②④❬✉❭✇②⑤ ❒❙❶➸❺②❷❈Ñ ✗③ ❋ Ò➹❒❙❺ z ∈ H ✉❢❶✝❮ a b ∈ Γ (N ).
R✰❽ ➂✹✇ ❮❊③▲➄ P = B ì✇②①❈③ i❽➽✇②①➸❹✯③❯✇✏✇②⑤❞❶☞❷❈④ùÛ➭③▲❺♥❒❢Ò X í✬✉❢❶✝❮❬⑤ ✇◆⑥✯❺②③⑨⑧❯⑤ ×❈❺②❒❊⑧▲✉❢Ñ✝❺②❒☞❒❢✇◆⑥✯✉❢❺②③➃✉❢Ñ ➄❙③▲Û❈❺◆✉❢⑤⑦⑧ ⑤ ❶❛✇②③▲➄❙③▲❺◆⑥ ✕ ⑤ ✇②①❃✉❢Û✝⑥✏❒❙Ñ ❷❊✇②③Ú➤❭✉❢Ñ ❷❈③ p ì❰✲✍③▲Ñ ⑤ ➄❙❶❈③➢í●❻ ❥➅③❯✇ ➁Ú✉❢Ñ ¯ Û➭③✟✇②①❈③➐✉❢Û✝⑥✏❒❙Ñ ❷❊✇②③❬➁Ú✉❢Ñ ❒❙⑤⑦⑥➃➄❙❺②❒❙❷❈×➅❻✡è♥①❈③▲❶❄✇②①❈③▲❺②③✡⑤⑦⑥➪✉❢❶ ❽❨✉❙❮❊⑤⑦⑧ Ô❯✇◆✉❢Ñ ③➮➁ÚG✉❢Ñ ❒❙=⑤⑦⑥♥❺②③▲×❈❺②(③⑨Q/Q) ⑥✏③▲❶❛✇◆✉❭✇②⑤ ❒❙❶ i p i i/2 ⑩❨❶➘×✝✉❢❺✏✇②⑤⑦⑧❯❷❈Ñ⑦✉❢❺⑨❸☞❷✝⑥✏⑤ ❶❈➄ ❻ X i ¯ ρiX, : G → GL(Het (X, Q )). ρiX, ( ❈❺②❒❙Û ) ❸ ✕ ③➪❮❊③❑✔✝❶❈③➃✇②①❈③ i❽➽✇②①✂ì➠⑧❯❒❙①❈❒❙④✡❒❙Ñ ❒❙➄❙⑤⑦⑧▲✉❢Ñí L❽❨⑥✏③▲❺②⑤ ③⑨⑥✬❒❢Ò ❉ p ↔ ➆✒↕❦➙✰➛✡➜✡➛✍➇❿➙➞➝❉➌✡➊ ♥ è♥①❈③ ❽➽✇②①❬ì➠⑧❯❒❙①❈❒❙④✡❒❙Ñ ❒❙➄❙⑤⑦⑧▲✉❢Ñí L❽❨⑥✏③▲❺②⑤ ③⑨⑥ L(X, s) = L(H (X, ¯ Q ), s) ⑤⑦⑥✧❮❊③❑✔✝❶❈③⑨❮➘Û☞Ó➐✇②①❈③✿❀✓❷❈Ñ ③▲❺✧i×❈❺②❒❊❮❊❷✝⑧●✇ ❮❊③❯✇ (1 − ρ (❉❈❺②❒❙Û )p ) × (⑥✏⑤ ④✡⑤ Ñ⑦✉❢❺♥Ò➠✉❙⑧●✇②❒❙❺☎✉❭✇ p = ) L (X, s) := ①❈③▲❺②③➃✇②①❈③➪×❈❺②❒❊❮❊❷✝⑧●✇✧❺②❷❈❶✝⑥✧❒❭➤❙③▲❺✯➄❙❒☞❒❊❮➸×❈❺②⑤ ④✡③⑨⑥▲✇❻ ✲✍⑤ ➄❙❺②③⑨⑥②⑥✏⑤ ❶❈➄✝❸ ✕ ③Ú①✝✉➢➤❙③ ✕ ⑥✏⑤ ④✡⑤ Ñ⑦✉❢❺♥Ò➠✉❙⑧●✇②❒❙❺☎✉❭✇ p = ).
Q Ò➹❒❙❺➸✇②①❈③ ❺◆✉❭✇②⑤ ❒❙❶✝✉❢Ñ❞③▲Ñ Ñ ⑤ ×❊✇②⑤⑦⑧➪⑥✏❷❈❺✏Ò➠✉❙⑧❯③⑨⑥ S Ò➹❒❙❺♥✇②①❈③➮✉❢Û➭❒❭➤❙③Ú④✡❒❊❮❊❷❈Ñ⑦✉❢❺✧➄❙❺②❒❙❷❈×✝⑥▲❻ ➄✁➅❉➆✝➇❿➈✝➆✔➉➬➷✹➌✘➯ ♥ tì ⑥✴③▲❺②⑤ Ñ ❿Ñ ③ ➍ ➝➞➟ ⑩❜❶ ⑦ íÚ❍❞▼❈❘✯■●❋ ✰➃❉●❋ ➴❢❋➠➱ù➺✓❩❭❚ ❩❙ã❯❋ä✕❆➭❩❭❇✟➼➹▼☞❉②❘◆❘➠➾❯➻❭❚ ➱➢■✧❑◆➻❭❖❈■●➼➽❉●❇✝❑❯➼❨❘◆➱ ❋❖✷❍❞▼❈❘◆➻❭❉②❘❯➳ ❳ ➲ ▼❈❩❭➚❭❘✟❃❘ ✰●ø❞❚ ❋➠❑❯❋➼♥➱❙❰❘ ☎✓❖✝❋❖☞➴➸❘ ✁ ❇✝❩❭➼➽❋➠➻❭❖❈■➪➻❭➚❭❘❯❉ ◗❏❇❊❉●➼➹▼❈❘❯❉●❳❬➻❭❉②✄❘ ❜✴➼➹▼❈❑❘ ✂❬❩❭❉②❘ ❩❭❚❚✕❳❬➻⑨➱❭❇❊❚ ❩❭❉ ➐ ❍❞➐➸➵ ▼❈❩❭➼♥❋⑦❲■ ❜✓➼➹▼❈❘❯❉②❘➮❋⑦■ù❩➸❑❯❇☞■➽ø❬➾❯➻❭❉●❳ f ➻r➾Ú➶✬❘❯❋ ➴➢▼☞Q➼ 4➐ ➻❭❖ Γ ■●❇✝❑◆▼ï➼➹▼❈❩❭➼ Γ L(X, s) = L(f, s).
Mathematisches Institut. Georg-August- Universitat Gottingen. Seminars Summer Term 2004 by Yuri Tschinkel
by Thomas
4.0